

OSPF (Open Shortest Path First) — протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала (link-state technology) и использующий для нахождения кратчайшего пути Алгоритм Дейкстры.

OSPF представляет собой протокол внутреннего шлюза, который распространяет информацию о доступных маршрутах между маршрутизаторами одной автономной системы.

OSPF предлагает решение следующих задач:

- 1. Увеличение скорости сходимости;
- 2. Поддержка сетевых масок переменной длины (VLSM);
- 3. Достижимость сети;
- 4. Использование пропускной способности;
- 5. Метод выбора пути.

Принцип работы OSPF:

Логика работы протокола OSPF следующая:

- 1. Маршрутизаторы обмениваются маленькими HELLO-пакетами
- 2. Обменявшись пакетами, они устанавливают соседские отношения, добавляя каждый друг друга в свою локальную таблицу соседей
- 3. Маршрутизаторы собирают состояния всех своих линков (связей с соседями), включающие в себя id Маршрутизатора, id соседа, сеть и префикс между ними, тип сети, стоимость линка (метрику) и формируют пакет, называемый LSA (Link State Advertisement).
- 4. Маршрутизатор рассылает LSA своим соседям, те распространяют LSA дальше.
- 5. Каждый маршрутизатор, получивший LSA добавляет в свою локальную табличку LSDB (Link State Database) информацию из LSA.
- 6. В LSDB скапливается информация, обо всех парах соединённых в сети маршрутизаторов, то есть каждая строчка таблицы это информация вида: «Маршрутизатор А имеет соединение со своим соседом маршрутизатором В, между ними сеть такая-то с такими-то свойствами».
- 7. После обмена LSA, каждый маршрутизатор знает про все линки, на основании пар строится полная карта сети, включающая все маршрутизаторы и все связи

- между ними.
- 8. На основании этой карты каждый маршрутизатор индивидуально ищет кратчайшие с точки зрения метрики маршруты во все сети и добавляет их в таблицу маршрутизации.

Как видно из описания алгоритма, он достаточно сложный и ресурсоёмкий. Это объясняет высокие требования OSPF к производительности маршрутизатора и оперативной памяти. Что происходит, если у одного из маршрутизаторов пропадает связь с соседом:

- 1. Он рассылает всем новые LSA
- 2. Все заново строят карту сети
- 3. Заново считают кратчайшие маршруты во все сети
- 4. Обновляют свою таблицу маршрутизации

RIP (Routing Information Protocol — протокол маршрутной информации) является внутренним протоколом маршрутизации дистанционно-векторного типа.

Будучи простым в реализации, этот протокол чаще всего используется в небольших сетях. Для IP имеются две версии RIP — RIPvl и RIPv2. Протокол RIPvl не поддерживает масок. Протокол RIPv2 передает информацию о масках сетей, поэтому он в большей степени соответствует требованиям сегодняшнего дня.

Принцип работы RIP:

Используя вектор расстояния маршрутизации, каждый маршрутизатор периодически делится своей информацией о входах в Интернет со своими соседями. Ниже приводятся три основных принципа этого процесса, для того чтобы понять, как работает алгоритм.

- 1. Распределение информации о входе в автономную систему. Каждый маршрутизатор распределяет информацию о входе соседним автономным системам. Вначале эта информация может быть не подробной. Однако объем и качество информации не играют роли. Маршрутизатор посылает, во всяком случае, все что имеет.
- 2. **Распределение только соседям**. Каждый маршрутизатор посылает свою информацию только к соседям. Он посылает информацию, которую получает через все интерфейсы.
- 3. Распределение через регулярные интервалы. Каждый маршрутизатор посылает свою информацию соседней автономной системе через

фиксированные интервалы, например, каждые 30 с.

Таблицы маршрутизации

Каждый *маршрутизатор* хранит таблицы маршрутизации, имеющие один вход для каждой сети назначения, которую *маршрутизатор* зарегистрировал. Вход содержит:

- 1. адрес сети пункта назначения,
- 2. кратчайший путь для того, чтобы достичь пункта назначения, отсчитываемый в участках,
- 3. следующий участок (следующий маршрутизатор), к которому должен быть доставлен пакет по пути к своему конечному пункту назначения,
- 4. счетчик участков это число сетей, которые пакет пересечет для достижения своего конечного пункта назначения.

Явные минусы RIP:

Обладает недостатками, которые не позволяют применять его в обширных и сложных системах.

Во-первых, малое значение бесконечности (из-за эффекта "счет до бесконечности") ограничивает размер RIP-системы четырнадцатью промежуточными маршрутизаторами в любом направлении. Кроме того, по той же причине весьма затруднительно использование сложных метрик, учитывающих не просто количество промежуточных маршрутизаторов, но и скорость и качество канала связи (чем хуже (медленнее) канал, тем больше метрика).

Во-вторых, само явление счета до бесконечности вызывает сбои в маршрутизации.

В-третьих, широковещательная рассылка векторов расстояний каждые 30 секунд ухудшает пропускную способность сети.

В-четвертых, время схождения алгоритма при создании маршрутных таблиц достаточно велико (по крайней мере, по сравнению с протоколами состояния связей).

В-пятых, несмотря на то, что каждый маршрутизатор начинает периодическую рассылку своих векторов, вообще говоря, в случайный момент времени (например, после включения), через некоторое время в системе наблюдается эффект синхронизации маршрутизаторов, сходный с эффектом синхронизации

аплодисментов. Все маршрутизаторы рассылают свои вектора в один и тот же момент времени, что приводит к большим пикам трафика и отказам в маршрутизации дейтаграмм во время обработки большого количества одновременно полученных векторов.

Преимущества OSPF в сравнении с RIP.

- Каждому интерфейсу назначается цена (метрика). OSPF может рассчитать отдельный маршрут для каждого IP, т.е. для любого пункта.
- Если к цели есть маршруты с близкой метрикой, то OSPF может осуществлять балансировку загруженности (распределять трафик обратно пропорционально метрике).
- OSPF поддерживает подсети: маска подсети приписана каждому объявленному маршруту. Маршруты к хостам объявляются с маской подсети, из всех единичных бит.
- OSPF маршрутизаторы могут поддерживать point-to-point и point-to-multipoin каналы связи.
- Каналы точка-точка между роутерами не имеют IP адресов на концах это называется сетями без адреса (unnumbered), позволяет сэкономить IP адреса и работу админов.
- OSPF могут использовать групповую адресацию вместо широковещательной, что уменьшает загруженность систем в сети, которые не работают с OSPF.
- Используется простая схема аутентификации. Может быть указан пароль в виде открытого текста так же как это делается в схеме RIP-2.
- При использовании протокола маршрутизации OSPF допускается существование нескольких маршрутов в направлении некоторого узла сети. В том случае, если эти маршруты обеспечивают одинаковое качество передачи данных, информационный поток в адрес данного узла может быть направлен по всем этим каналам одновременно, что обеспечит существенное увеличение скорости передачи данных.
- Версия RIPvI не распространяет маски подсетей, что вынуждает администраторов использовать маски фиксированной длины во всей составной сети. В версии RIPv2 это ограничение снято.
- В сетях, использующих RIP и имеющих петлевидные маршруты, могут наблюдаться достаточно длительные периоды нестабильной работы, когда пакеты зацикливаются в маршрутных петлях и не доходят до адресатов. Для борьбы с этими явлениями в RIP-маршрутизаторах предусмотрено несколько приемов (Split Horizon, Hold Down, Triggered Updates), которые сокращают в

некоторых случаях периоды нестабильности.

- Протокол OSPF был разработан для эффективной маршрутизации IP-пакетов в больших сетях со сложной топологией, включающей петли. Он основан на алгоритме состояния связей, который обладает высокой устойчивостью к изменениям топологии сети.
- При выборе маршрута OSPF-маршрутизаторы используют метрику, учитывающую пропускную способность составных сетей.
- Протокол OSPF является первым протоколом маршрутизации для IP-сетей, который учитывает биты качества обслуживания (пропускная способность, задержка и надежность) в заголовке IP-пакета. Для каждого типа качества обслуживания строится отдельная таблица маршрутизации.
- Протокол OSPF обладает высокой вычислительной сложностью, поэтому чаще всего работает на мощных аппаратных маршрутизаторах

Заключение: в OSPF сняты все ограничения, присущие для RIP, что делают его более предпочтительным. Так как большинство поставщиков маршрутизаторов поддерживают OSPF, он начинает постепенно замещать собой RIP в большинстве сетей.

Источники:

- 1. http://net.academy.lv/lection/ net LS-13RU routing-ospf.pdf
- 2. http://subnets.ru/blog/?p=569
- 3. http://www.intuit.ru/studies/professional retraining/940/courses/2/lecture/42